Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yuezhao Zhu, ${ }^{\text {a }}$ Shujiang Tu, ${ }^{\text {b }}$ * Fang Fang ${ }^{\text {b }}$ and Jianing $X \mathbf{u}^{\text {b }}$

${ }^{\mathrm{a}}$ Nanjing University of Chemical Technology, Nanjing 210009, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: laotu2001@263.net

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.050$
$w R$ factor $=0.115$
Data-to-parameter ratio $=16.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Ethyl 2-amino-4-(4-chlorophenyl)-6-(4-methoxy-phenyl)pyridine-3-carboxylate

The title compound, $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3}$, was synthesized by the reaction of 4-chlorobenzaldehyde, 4-methoxyacetophenone, ethyl cyanoacetate and ammonium acetate under microwave irradiation. X-ray analysis reveals that the benzene rings are orthogonal to each other and form dihedral angles of 29.34 (6) and $79.45(6)^{\circ}$ with the pyridine ring. In the solid state, the molecules exist as centrosymmetric $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonded dimers.

Comment

Small organic molecules such as nitrogen-containing heterocyclic compounds have received a large amount of attention in the literature, not only for their theoretical interest but also because they exhibit a variety of biological activity. The pyridine ring system represents an important class of compounds because of its biological activities (Temple et al., 1992; Kambe et al., 1980; Shintani et al., 2003). Recently, we have synthesized some pyridine derivatives under microwave irradiation, without any solvent. Now, we report the crystal structure of the title compound, (I).

(I)

In (I), the pyridine ring is essentially planar, with a maximum deviation of 0.011 (1) \AA for atom C 4 . The 4 methoxyphenyl ring $[A(\mathrm{C} 15-\mathrm{C} 20)$] and 4-chlorophenyl $[B$ (C9-C14)] ring are perpendicular to one another [dihedral angle $\left.89.73(6)^{\circ}\right]$. The pyridine ring forms dihedral angles of 29.34 (6) and 79.45 (6) ${ }^{\circ}$, respectively, with rings A and B. The ethoxycarbonyl moiety is planar, with an r.m.s deviation of $0.034 \AA$, and is nearly coplanar with the pyridine ring [dihedral angle $4.6(1)^{\circ}$]. An intramolecular $\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1$ hydrogen bond is observed in the molecular structure. In the crystal structure, the molecules form centrosymmetric $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded dimers (Table 1 and Fig. 2).

Experimental

Compound (I) was prepared by the reaction of 4-chlorobenzaldehyde (2 mmol), 4-methoxyacetophenone (2 mmol) ethyl cyanoacetate (2 mmol) and ammonium acetate (2 mmol) under microwave irradiation (yield 43\%; m.p. 442-443 K). Single crystals of (I) suitable for

Received 12 November 2004 Accepted 22 November 2004 Online 27 November 2004

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3}$
$M_{r}=382.83$
Triclinic, $P \overline{1}$
$a=8.5398(14) \AA$
$b=10.1117(13) \AA$
$c=12.729(2) \AA$
$\alpha=72.153(14)^{\circ}$
$\beta=81.338(16)^{\circ}$
$\gamma=65.053(13)^{\circ}$
$V=948.3(3) \AA^{\circ}$

$Z=2$
 $D_{x}=1.341 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 4130
reflections
$\theta=3.1-27.5^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Block, colourless
$0.70 \times 0.41 \times 0.34 \mathrm{~mm}$

Data collection

Rigaku Mercury diffractometer
ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.858, T_{\text {max }}=0.927$
10603 measured reflections
4254 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.115$
$S=1.11$
4254 reflections
254 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.88(2)$	$2.26(2)$	$3.1288(19)$	$169(2)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1$	$0.85(2)$	$1.97(2)$	$2.6529(19)$	$136(2)$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.95	2.77	$3.7125(18)$	175

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $-x, 1-y, 2-z$.
H atoms of the amino group were located in a difference Fourier map and were refined isotropically $[\mathrm{N}-\mathrm{H}=0.85$ (2) and 0.88 (2) \AA].

Figure 2
Molecular packing of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds.

All other H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-0.99 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for the aromatic and methylene H atoms.

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 20002003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We thank the Natural Science Foundation of China (No. 20372057), the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province (No. 01AXL 14) and the OpenEnd Fund of the Key Experiments of Organic Synthesis, Jiangsu Province (S8109111) for financial support.

References

Jacobson, R. (1998). Private communication to the Rigaku Corporation.
Kambe, S., Saito, K., Sakurai, A. \& Midorikawa, H. (1980). Synthesis, pp. 366368.

Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2000-2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997a). SHELXS 97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Shintani, T., Kadono, H., Kikuchi, T., Schubert, T., Shogase, Y. \& Shimazaki, M. (2003). Tetrahedron Lett. 44, 6567-6569.

Temple, C., Rener, Jr. G. A., Raud, W. R. \& Noker, P. E. (1992). J. Med. Chem. 35, 3686-3690.

[^0]: (C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

